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ABSTRACT 

Let Kbe an algebraically closed field of characteristic zero. ForA ~K[x, y] let 
a(A) = {2 EK: A - 2 is reducible}. For 2 Ca(A) let A - 2 = l'Int.a~ A~ where 
Aa are distinct primes. Let pa(A) = n(A) - 1 and let p(A) = Z~otA)pa(A). The 
main result is the following: 

THEOREM. If A EK[x, y] is not a composite polynomial, then p(A)< 
deg.4. 

Introduction 

Let K be an algebraically closed field o f  characteristic zero. For  P,  Q 

K[x, y] let 

OP OQ OP OQ 
[P, Q] ffi 

OxOy OyOx 

For F E K ( x , y )  set De(F)=  [P,f];  De is a derivation of  both K[x ,y]  

and K ( x , y ) .  The operation [ , ] imposes a Lie-algebra structure on 

K[x, y]. 
The main goal of  this paper is to s tudy the interplay between this Lie-algebra 

structure and  the structure o f K [ x ,  y] as a polynomial  ring. The operators De 

play a prominent  role in studying seemingly purely algebraic properties of  

K[x, y]. On the other hand,  these operators play a very important  role in the 

analytic case K = C, especially in studying problems related to the Jacobian 
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Conjecture (see [1], [6], [7], [8]). Similar operators are very important  in the 
non-commutative case (see [2]). 

Most of this paper is concerned with the following problem: For P E K[x, y], 
what is the set of those constants 2 E K, for which P - 2 is reducible? This set is 
called the spectrum of P and will be denoted by a(P). This question was 
answered in part by the Bertini theorem, which states that a(P) is at most a 
finite set if P is non-composite (not a non-linear polynomial of  another 
polynomial Q~K[x,  y]). In this connection see [4] Section 11. The Bertini 
theorem, however, does not give any indication how large a(P) can be. This 
question was considered by W. Ruppert  in [3]. He proves the following result: 

Given a pencil of plane curves of  the form aP + flQ, (a, f l ) E P  1. If  the generic 
curve in this pencil is irreducible of  degree d, then the pencil contains at most  
d E -  1 reducible curves (see [3], Satz 6). We will consider a less general 
question and will prove a stronger result. For A ~ a(P)  we can decompose 

-,ca) F~f. Geometrically speaking, P - A into the product of primes: P - 2 = l l i _  I 

the curve { P = 2 }  is the union of n(2) irreducible curves {Fai =0} .  The 
number  pa(P) = n (2) - 1 is called the reducibility order of P at A. The number  
P(P) = Y, aeotp)P~(P) is called the total reducibility order of P. The main result 
of this paper is the following: 

THEOREM. Let P ~K[x, y] be noncomposite. Then p(P) < deg P. 

The rest of the paper is concerned with describing the solutions of the 
equation De(F) = TF, where T is a polynomial and F is a rational function. 
The main result of this part of the paper can be described as follows: those 
polynomials Tfor  which the equation has non-trivial solutions F f o r m  a free 7_,- 
module of  finite rank. If  Q is a non-composite polynomial such that P E K[Q], 
then the rank of this module is p(Q). 

1. The Bertini theorem 

Let K be an algebraically dosed  and uncountable field, char K = 0. For 
P ~K[x, y] \ K  set: 

D,( f )=OPOf  OP Of. 
OxOy OyOx' 

De is a derivation on both K[x, y] and K(x, y). We will be interested in the 
kernels of De in K[x, y] and in K(x, y). Let C(P) -- Ker De in K[x, Yl and let 
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C(P) = Ker De in K(x, y). C(P) is a subring of K[x, y] and C(P) is a subfield of  

K(x, y). There is a convenient way of describing these kernels: 

LEMMA 1.1. Let f EK(x, y). Then the following conditions are equivalent: 
(i) fEC(P). 
(ii) f and P are algebraically dependent. 
(iii) f is constant on infinitely many irreducible components of level curves 

{e 

PROOF. (i) --- (ii). Assume that P a n d f  are algebraically independent. Then 

for every non-constant Q EK[x, y] there exists a polynomial R(X, Y, Z) such 

that aR/OZ~O and R(P,f,  Q)~O (K(x,y) does not contain subfields of 

transcendental degree greater than two). In other words: 

n 
~,, R i (P , f )Oi~O 

i=O 

and at least the polynomial Rn does not vanish identically. We can assume n to 
be the least possible for Q. Then: 

O----De(R(P, f, Q ) ) = ( i - i  ~ iRi(P' f )Qi- ' )  De(Q)" 

If n > l ,  then De(Q)=O because of  our choice of  n. If n - - l ,  then 

R,(P, f)De(Q) = 0 and De(Q) = 0 since R~(P, f)~O. Thus De(Q) = 0 for each 
Q ~K[x, y]. This implies that P E K  - -  a contradiction. 

(ii)---, (iii). Assume that P a n d f  are algebraically dependent: 

~. Ri(e) ff = O. 
i=0 

Choose a number 2 ~ K and an irreducible component S of the level curve 

{P = 2 } in such a way that S is not contained in the variety of poles off.  There 

are infinitely many such curves S since K is infinite. We obtain on 

S:  Z~=0 Ri(2)ff  = 0. Therefore f can obtain on S a finite number of values 

only, which implies that f is constant on S since S is irreducible. 

(iii) ~ (i). Let S be as above. I f f  is constant on infinitely many such curves 

S, then De( f )  = 0 on infinitely many curves. This implies that D e ( f )  ----- 0 since 

De(f)~K(x, y). 

COROLLARY. Let A ~ C(P), deg A > 0. Then C(A) = C(P) and C'(A) = 
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PROOF. Obvious. 

Let S be an irreducible algebraic curve in K 2 and let S denote the pro- 

jective closure of S. Let S'  & ~q be the normalization of S. The smooth 

projective curve ~¢v is called the smooth projective model of  S, and S is 

birationally isomorphic to ~q'. (See [5], Chapter 2, Section 5.) Let p~ . . . .  , p, be 

the points of  S on infinity, i.e. the points of  intersection of ~¢ with the line on 

infinity in pz. Let ql, • • •, qd denote the inverse images ¢-~(pi). These inverse 

images exist since ¢ is epimorphic (see [5], Chapter 2, Section 5). The points 

q~ . . . . .  qd E~Cv are called the branches of the curve Son infinity. If Sis  given by 

an equation {F = 0), where F is an irreducible polynomial, then, obviously, 

d < deg F. 

Let f be a rational function on S. When we discuss the behavior o f f  at a 

branch q,, we should, strictly speaking, consider the behavior of  the pull-back 

#* ( f )  at q,, but, since it does not lead to confusion, we will usually speak about 

values of f a t  the branches qj. 

LEMMA 1.2. Let S be an irreducible algebraic curve in K 2 and let q~, . . . .  qd 

be the branches o f  S on infinity. Let F be a rational function such that the 

restriction ,¢ o fF  to S is regular and does not have zeroes. Let vj denote the order 

o f  ~¢ at the branch qj. Then: X d_ i vj = O. 

PROOF. Obvious. 

For 2 ~ , . . . ,  2, ~ K and P E K [x, y ], deg P > 0 let G (P, 2t . . . .  ,2,)  denote the 
multiplicative group generated by all divisors of the polynomials P - 2~. 

PROPOSITION 1.3. Let F~ . . . . .  F, EG(P,  Zl . . . . .  2,). I f  r > d e g P ,  then 

there exists a non-trivial collection o f  integers ml . . . . .  m, such that the rational 

function f = II~_~ F~', E ~(P). 

PROOF. Choose a number ? E K ,  ? ÷ X~,. . . ,  2,, and an irreducible com- 

ponent S of the level curve {P = 7}. Let ql . . . . .  qd be the branches of  S on 

infinity. The functions Fi are regular and do not have zeroes on S since 

7 ~ Xl , . . . ,  2,. Let v o denote the order of Fi at qj. Consider the matrix 

\ Vrl . • Vrd ] 

By Lemma 1.2, Z d_ ~ v o. = 0 for i = 1 . . . . .  r. Therefore rk M < d _-< deg P. 
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Since, by our assumption, r > deg P, there exists a non-trivial collection 

of integers ml(~,, S ) , . . . ,  mr(~', S) such that 2i= ~ m~(7, S)v~j = 0 for 
j --- 1 . . . . .  d. Consider the rational function fr.s = 1-IT= i F m'tr's). This function 

is regular and does not have zeroes on S. Neither can it have zeroes or poles at 

the branches qj since 2f_ ~ m~(~,, S)v~j = 0 for j = 1 . . . .  , d. Therefore fr.s is 
constant on S. 

Thus every appropriate choice of  ~ and S results in a non-trivial collection 
of integers {m~(~,, S)} such that the function frz = 1-l~=l F m~y's) is constant 

on the curve S. Since K is uncountable, there are infinitely many pairs 

(~,, S) for which the resulting collection {m~(~,, S)} is the same. Therefore 

there exists a non-trivial collection of integers {m~} such that the rational 

function f = yIr= 1 F~' is constant on infinitely many curves S. Then f ~  C(P) 

by Lemma 1.1. 

For P ~K[x,  y], deg P > 0, let a(P) = {2 ~ K :  P - 2 is reducible}. The set 

tr(P) is called the spectrum of P. The Bertini theorem states that there are only 
two possibilities: 

Either t r (P)=  K and there exist R(Z)~K[Z],  degR > 1 and Q~K[x ,  y] 
such that P = R(Q), or a(P) is at most a finite set. 

We will give a new proof of the Bertini theorem and at the same time we will 

find a sharp upper bound for the number of  elements of  a(P). 
Let P ~K[x,  y], deg P > 0. P is called a composite polynomial if there exist 

R (Z) ~ K[Z], deg R > 1 and Q E K[x, y] such that P = R (Q). P is called non- 
composite if it is not composite. 

Let P~K[x ,  y], degP  > 0, and let 2 EK.  Let 

n(a) 

i = l  

be the decomposition of P - ; t  into the product of  prime factors. The num- 

ber Pa(P) = n(2) - 1 will be called the reducibility order of  P at 2 and the 
number 

p(P)-- ~ Pa(P) 
2EK 

will be called the total reducibility order of  P. 

REMARK. Note that p(P) = ~ i fP  is composite and, on the other hand, for 
a non-composite P, p~(P) > 0 if and only if 2 E o(P). 
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PROPOSITION 1.4. Let P be a non-constant polynomial. Assume that 
C(P) = K(P). Then P is non-composite and p(P) < deg P. 

PROOF. Assume for a moment that P is composite, i.e. that there exist 

R(Z)EK[Z],  deg R > 1 and Q ~K[x,  y] such that P = R(Q). Then De(Q) = 
0 and QEC(P).  Hence Q~K(P) ,  Q =A(P)/B(P) where A , B ~ K [ P ]  are 

coprime. This implies that B ( P ) ~ K  since it cannot have zeroes. Hence 

Q ~K[P], which is clearly impossible. Therefore P is non-composite. Assume 

that p(P)> degP.  This means that there exist 21 . . . .  , 2 t E a ( P )  such that 

El= ~ p~j(P) > deg P. Let e - 2j = I/~c_~ f~j' be the decomposition o f P  - ;tj into 

the product of  prime factors. Consider the following collection of polynomials: 

{Fu, . . . ,F~, ,_~ . . . .  ,F,~ . . . . .  Fr,,-1}. All polynomials in this collection 

belong to G(P, 2~, . . . ,  2,) and the number of elements in it is Zf=~ Pa,(P) > 

deg P. Therefore, by Proposition 1.3 there exists a non-trivial collection of  

integers 

{ m l l , . . . , m l , , - i  . . . . .  m,l . . . .  , m r . , - l }  

such that the rational function 

nj 

f = f i  i-[ % ~ Fji e C(P). 
j = l i = l  

Then, by our assumption, f =  A (P)/B(P), where A, B ~K[P] are coprime. If  
we decompose A(P) and B(P) into products of linear (in P) factors, we note 
that for each such factor all its prime divisors are present, which contradicts 
our choice of the collection: 

{ E l l  . . . .  , F i n , - , , . . .  , F r l ,  . . . , F t , , _ , ) .  

Therefore our assumption is false and p(P) < deg P. 

To proceed further, we now introduce some auxiliary concepts: 

Let G(P) denote the multiplicative group generated by all divisors of  

polynomials P - ;t for all ;t E K a n d  by non-zero elements of K. It is easy to see 

that 

G(P)= U G(P,2,, . . . ,~,). 
{21,...,2 n }cK 

A collection F t , . . . ,  FrOG(P) is called P-free if there is no non-trivial 

collection of integers {m~ . . . .  , mr} such that: 

F~ ' , . . .  F~,~ (~(P). 
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It follows from Proposition 1.3 that r < d e g P  for any p-free collection 

{F,,..., Fr). 
A P-free collection {FI . . . . .  Fr} is called maximal  if  {F1 . . . . .  Fr, F} is not 

P-free for every F ~ G(P). It is obvious that if there exists a P-free collection, 
then there exists a maximal P-free collection. 

A non-constant polynomial P EK[x ,  y] is called basic if 

min deg Q -- deg P. 
QEC(P)',K 

LEMMA 1.5. Let P be a basic polynomial. I f  a(P) ~ ~ ,  then there exists a 

P-free collection (and, therefore, a maximal  P-free collection). 

PROOF. Let 2 ~ a(P) and let P - i = 1-If= 1 F~,, Fi - -  irreducible. Then {Ft } 

is a P-free collection. Indeed, assume that F~E C(P) for some integer k ~ 0. 

Then F1 ~ C(P) by Corollary to Lemma 1.1, but this is impossible since P is 

basic and deg F1 < deg P. 

PROPOSITION 1.6. Let P be a basic polynomial. Then C(P) = K[P] and 
C(P) = K(P).  

PROOF. We will first prove that e(P) ~ K. Indeed, assume that a(P) = K. 
By Lemma 1.5 there exists a maximal P-free collection { F , , . . . ,  Fr}. For 

a E K  choose an irreducible divisor F,  of P - a .  Then the collection 

{ F t , . . . ,  Fr, F,} is not P-free and there exists, therefore, a non-trivial collec- 

tion of integers 

{ml(a) . . . .  , mr(~), m~} 

such that m, ~ 0 and F7 ',<~).. .Fm~)F~.E C(P). The same construction for 
p # o~ gives us another collection of integers: 

{mr (P ) , . . . ,  mr(/?), ma} 

with similar properties. Since K is uncountable, there exists a pair a ~ p such 

that mi(oO = mi(fl) = mi and m~ = m a = m (i = 1 . . . .  , r). Hence 

FT' . . . .  F T , F ~ C : ( P )  and F~' . . . .  F~ ,F f '~d (P) .  

Then (F,/Fa) m ~ C(P) and, by obvious reasons, F~/F a E C(P). 
Let FaGs = P - a, FaG a = P - / 3 .  Then 

F, Gp -- F~(P - j S )  ~ ( p )  
Fa 
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and, since F,,Gp is a polynomial, F~,Gp E C(P). Similarly FpG,, E C(P). Now 
consider the product (P - a)(P - fl) = (F,,Gp)(FpG,,). If deg F, Gp > deg P, 
then degFpG~ < degP,  which is impossible since P is basic. Therefore 
deg F,,Gp = deg FpG,, = deg P. Let F,,Gp denote the leading term of  F,,Gp and let 
P denote the leading term ofP.  Since F,,Gp ~ C(P) there exists a constant c such 
that F,,Gp = cP (this follows from the well-known fact that homogeneous 
polynomials of the same degree, whose jacobian is zero, must be proportional). 

Let A = F,,Gp - cP, A ~ C(P) and deg A < deg P. Since P is basic, it follows 
that A = c~ E K. Thus 

F~Gp = cP + cl = c(P + cJc). 

So F~ is a divisor o fP  + q/c .  Since F, is also a divisor o fP  - a, it follows that 
Cl/C = - a .  Applying the same argument to Gp, we obtain that c~/c = - f l ,  
which is impossible since a ÷ft .  Therefore a ( P ) ÷  K and there exists 
2 ~ K  such that P -  2 is irreducible. Choose any polynomial Q ~ C ( P )  

and consider its restriction to the irreducible curve {P = 2}. Since Q and 
P are algebraically dependent by Lemma 1.1, this restriction must be a 
constant. Therefore Q = Q~(P - 2) + c~, cl ~ K a n d  deg Q1 < deg Q. Q~ E C(P) 
and we can repeat the argument until we obtain that Q EK[P]. Therefore 

c ( e )  = KIP]. 
Now consider a rational function f E  C(P). Let f =  A/B,  where A and B are 

polynomials without common factors. Since f a n d  P are algebraically depen- 
dent by Lemma 1.1, there exists a polynomial Z~-0 R~(X)Y i, Rn(X) ~ O, such 
that Z~_o R~(P) f ~ =0 .  Then ZP_o R~(P)AiB -~ = 0  or, in other words, 
R,(P)A n=  - B  Z~_-0 ~ R~(P)A~B "-~-~. Since A and B do not have common 
factors, it follows that R,(P) = UB, U E K [ x ,  y]. Then " 

f = A = UA UA ~ C(P) = K[PI and f E  K(P). 
B R , (P) '  

Thus C(P) = K(P). 

THEOREM 1.7. Let P ~ K [ x ,  y], deg P > 0. Then the following conditions 

are equivalent to P being non-composite: 

(i) P is basic. 
(ii) C(P) = K[P] and C(P) = K(P). 
(iii) p(P) < deg P. 

PROOF. (i) Assume that P is basic. If P is composite, then there exist 



Vol. 68, 1989 REDUCIBLE POLYNOMIALS 117 

R (Z) ~ K[Z], deg R > 1 and Q E K[x, y] such that P = R (Q). Then Q E C(P) 
and 0 < deg Q < deg P, which is impossible since P is basic. Thus P is 
non-composite. 

Now assume that P is non-composite. Let Pz be a non-constant poly- 
nomial of the least degree in C(P). Then, obviously, Pt is basic and 
C(P) = C(PO = K[Pd by Proposition 1.6. Thus P = R(PO. I fdeg R > 1, then 
P is composite. Hence deg R = 1 and P = ctP~ + c2, which implies that P is 
basic. 

(ii) If  P is non-composite, then by (i) P is basic and the result follows from 
Proposition 1.6. 

If (~(P) --- K(P), then P is non-composite by Proposition 1.4. 
(iii) I f  P is non-composite, then (~(P) = K(P) by (ii) and p(P) < deg P by 

Proposition 1.4. 
I fp(P)  < deg P, then P is non-composite since p(P) = oc for a composite P. 

COROLLARY. Let P EK[x, y], deg P > 0. Let Go(P) denote the multiplica- 
tire group of the field C(P) (Go(P) is, obviously, a subgroup of G(P)). Then: 

(i) There exists a non-composite Q EC(P) such that C(P)= K[Q] and 
C(P) = K(Q). 

(ii) G(P) = G(A) and Go(P) = Go(A)for every non-constant A E C(P). 

PROOF. (i) Let Q be a non-constant polynomial of the least degree in C(P). 
Then Q is basic. The rest follows from Theorem 1.7 and from Corollary to 
Lemma 1.1. 

(ii) Let A EC(P), degA > 0 .  Then A = R ( Q )  for a non-composite Q ~  
C(P). Let F be an irreducible divisor o fA - 2 for some 2 ~ K .  Then F is an 
irreducible divisor of R(Q) - 2  --- c(Q - 7~)*' • • • (Q - y,)*". Therefore F is a 
divisor of Q - 7~ for some index i. 

Thus G(A) c G(Q). Now let F be a divisor of Q - 7 for some y E K. Then F 
is a divisor of R ( Q ) - R ( 7 ) = A - R ( 7 ) .  Therefore G(Q)c G(A). Hence 
G(A ) = G(Q ) for every non-composite Q E C(P), which implies that G(A )= 
G(P). Go(A) =- Go(P) since t~(A) = (~(P) by Corollary to Lemma 1.1. 

A non-composite Q such that C(Q) = C(P) will be called a generator of  P. 
The quotient group F ( P ) =  G(P)/Go(P) is an important  invariant of the 
polynomial P (or rather of the field (~(P)) and  will be called the divisor class 
group of P. Its structure is described in Section 2. To do this, we need one 
technical result: 

LEMMA 1.8. Let PUK[x,y] be non-composite. Let F--II/ '_~ Fi, F~E 
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G(P, 2,) and 2, # 2: for i 4:j. I f  FEC(P) ,  then F ~ C ( P )  for i = 1 . . . . .  n. 
Moreover, Fi is a power of  P - 2~ up to a constant multiplier. 

PROOF. C(P)=K(P)  by Theorem 1.7. Thus F=A(P)/B(P) ,  where 

A(P), B(P)~K[P]. Decomposing A(P) and B(P) into linear (in P) factors we 

obtain: 
n m 

H F, =c H (P-72)  k', c, 7 , , . . . , 7 " ~ K .  
i ~ l  j ~ l  

Decomposing each Fi and each P - ~,j into irreducible factors, we immedia- 

tely obtain that the collections {21,. • •, 2, } and {Tt . . . .  ,7,. } coincide and that 

Fi is a power of P - 2~ up to a constant multiplier. 

2. The structure of the group F(P) and the equation D e ( F )  = TF 

For a non-constant P E K[x, y] and F ~ K(x, y) set: 

De(F) 
ze(F) = 

F 

LEMMA 2.1. Let F ~ K [ x , y ]  be irreducible and such that r e ( F ) =  

T ~ K [ x ,  y]. Then there exists 2 E K  such that F is a divisor of  P - 2. 

PROOF. Consider the partial derivatives 8F/Ox = D r ( y )  and OF/@ = 
- De(x). At least one of  them is not zero since F ~ K. Assume that OF/Ox ÷ O. 
Let/~, y denote the restrictions of  P and y to the curve ( F  = 0}. The regular 

functions/5 and y on the curve {F = 0} are algebraically dependent: R(P,  ~P) -- 

0, where R is a non-trivial polynomial in two variables. Therefore, since F is 

irreducible, R(P, y) = AF for some A EK[x,  y]. Let R(P, y) = Z:-o Ri(P)y ~ 
and let n be the least possible. Assume n > 0. Then 

OR OR OF OR OF TFOR 
Dr(R(P' Y ) ) = - ~  Dr(P) +-~y ~x = Oy Ox O--P" 

On the other hand Dr(R (P, y)) = Dr(A)F. So 

DF(A)F _ O R a F  Ta__~R F 
Oy Ox OP 

and we obtain that F divides (OR/03:)(OF/ax). F cannot divide OF/Ox and, since 

F is irreducible, it divides dR/Oy. This contradicts our choice of  n and we 

conclude that n = 0. 
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Thus there exists a non-trivial polynomial R(P) which is a multiple 

of F. Therefore P can obtain only a finite number of  values on the 

curve {F = 0}, which implies that P is constant on this curve since F is 

irreducible. 

PROPOSITION 2.2. (i) The map re, when considered as a map from the 
multiplicative group K*(x, y) of the field K(x, y) into the additive group of this 
field, is a group homomorphism. 

(ii) I f  F 1, F2~K[x, y] are polynomials without common factors such that 
re(F~F2)EK[x, y] or re(F~/F2)EK[x, y], then re(FO~K[x, y] and re(F2)G 
K[x, y]. 

PROOF. 

De(FIF2) De(FOF2 + De(F2)F~ 
(i) re(F, F2) . . . .  ze(FO + ze(F2), 

FIF2 FIF2 

re(F-~) = FDe(F- ~) = 
FDe(F) 

F 2 
- -  = - re(F). 

(ii) If  re(F~F2)= T~K[x,  y], then T = De(FmF2)IF~F2 or, in other words, 

TF~F2 = De(F~)F2 + De(F2)F~. Thus F~ divides Dp(F1)F2 which implies that FI 

divides De(FO since F~ and F2 do not have common factors. So De(F~) = T~F~ 
and De(F2) = (T - Tt)F~. Therefore ze(F~) = 7"1 ~K[x, y] and ze(F2) = T2 = 
T -  T~EK[x,y]. Similarly, if z,,,(Ft/F2)= T~K[x,y] ,  then TF~F2= 
De(FOF2 - De(F2)FI and the rest follows as above. 

PROPOSITION 2.3. zp(G(P)) = K[X, y] f3 zv(K*(x, y)). 

PROOF. We will first prove that rp(G(P)) c K[x, y]. Since reis a homomor- 

phism, it will suffice to prove that re(F)EK[x, y] if  F is a divisor of  P - 2 ,  

2 ~ K. So let AF = P - 2. Then 

Dp(F) De_a(F) DAr(F) 
zp(F) . . . . . . .  DA (F)E K[x, y]. 

F F F 

Now assume that zp(F)~K[x,y] for some F~K*(x,y) .  Let F = A / B ,  
where A, B ~K[x, y] do not have common factors. Then zp(A)EK[x, y] and 

zp(B) E K[x, y] by Proposition 2.2. 

Our goal is to prove that F E G(P). It will therefore suffice to prove that 

A~G(P) i fA~K[x ,y] ,  A 4= const and zp(A)EK[x,y]. Let II~=~ F p, be the 

decomposition of A into the product of  primes. It follows from Proposition 2.2 
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that ze(F~,)~K[x, y] for i = 1 . . . .  , n. But then ze(F~) = ze(Fik,)lki ~K[x, y]. 
It now follows from Lemma 2.1 that Fi is a divisor of P - 2i for some A~ ~ K. 

Thus A ~ G(P) and zp(G(P)) D K[X, Y] t3 zp(K*(x, y)). This concludes the 

proof. 

Let f'(P) = ze(G(P)), f'(P) is a subgroup of the additive group of  K[x, y]. 

Since Ker re = Go(P), we can consider re as an isomorphism F(P) 5~ f,(p). Let 

~: G(P)~ F(P) be the natural projection homomorphism and let F(P, 2 ) =  
7r(G(P, 2)). Let l~(p, 2) --- re(F(P, 2)). 

Strictly speaking, re:G(P)~f'(P) and re:F(P)~ ' (P)  are two different 
maps, but we use the same notation for both of them since this does not lead to 
confusion. 

If P~K[x,  y] is non-composite, then a(P) is either empty or a finite set 

{21 . . . . .  2n}. (a(P) is at most finite, since, by Theorem 1.8, the number of 

elements of a(P) cannot exceed p(P) which is finite.) 

THEOREM 2.4. Let P~K[x,  y] be non-composite. Then: 
(i) ~'(P, 2) = 0 if and only ifX q~ a(P). 
(ii) If2 E a(P), then f'(P, 2) is a free Z-module and rk I'(P, 2) = px(P). 
(iii) ~(e)  =(~eo(e) f'(P, 2) and rk ~'(P) = p(e). 

PROOF. (i) Assume I"(P, 2) = 0. Then, obviously, G(P, 2) c Go(P). Let F 
be a divisor o f P  - 2. Then FE Go(P) C C(P) and, by I_emma 1.8, Fis  a power 
of P -  2 up to a constant multiplier. Therefore P -  2 is irreducible and 
2 q~ a(P). 

Now assume that 2 ~ a(P). Then P - 2 is irreducible and G(P, X) is gener- 

ated by K* and by powers of P - 2. Hence G(P, 2) c Go(P) and F(P, X) = 0. 

Therefore f'(P, 2) = 0. 
(ii) Let X ~ a(P) and let P - 2  - , , , -_ ,  • ~ - ~ ( ~ }  d'~ be the decomposition of  P -  2 

into the product of  primes. Set A~, = re(F.~). K* and F~i's generate G(P, 2) as a 

multiplicative group. Therefore Az's generate ~'(P, X) as a Z-module. So 

i'(P, 2) is a finitely-generated Z-module and, sinceit is without torsion, ~(P, X) 

is a free Z-module. We will now prove that X~(_al k~Aag = 0 and that this is the 
only relation between Ax~'s. Indeed 

n(2) 

0 = re (P-2 )  = ~ k;aA;a. 
i= l  

Now let {m~ }, 1 _-< i < n (2), be a non-trivial collection of integers such that 
y..,(x) m~Az = 0. Then 
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0 = zp F~, and 1-I F~, ~ Go(P) c C(P). 
i - - 1  i f f i l  

It follows f rom Lemma  1.8 that 1-I n(a) F m, = c ( P - 2 )  jv for c ~ K * ,  N E Z .  i =  1 ,,li 

Therefore II ."(~),ffi, F~, = c H/"L~I F~i k~. So c = 1 and m; = Nkai for 1 _<- i =< n(2). 

Thus the only relation between Aai's is Z~(jl ka~Aa; = 0 and rk f ' (P ,  2 ) =  

n(2) - 1 = p~(P). 
(iii) Let T E ~'(P). Then T = re(F) for some F E G (P). F can be decomposed 

in the following way: 

n(~) 
F=A(?) II IIF  

2 ~ a ( P )  i -  1 

where A (P) E C(P) and F,i is an irreducible divisor o f  P - 2. Then 

n(~) 
T = re(F) = ~ ~ m~,Aai, where A~i = ze(Fai). 

; t e a ( P )  i ffi 1 

It was shown in (ii) that A~'s generate ~(P, 2) as a Z-module.  Therefore 

F(P) = Za~,(e) f '(e, A). 
Now we have to prove that this is a direct sum. Indeed, assume that there 

exists a relation Y~E,(P) T~ = 0, where Ta E f '(P, 2). Then T~ = re(F~) for some 

Fa U G(P, 2). 

The relation F,.~e,,te) Ta = 0 implies that l'Iaeote) F~ ~ C(P), which implies by 

Lemma 1.8 that Fa = ( e  - 2) s~. Hence T~ = 0. Thus I~'(P) = ~ e o ( P )  ~'(P, 2) 

and 
rkl~(P) = E rk f ' (P ,  2 ) =  ~ pa(P)=p(e) .  

A ~-a(P) 2 Ca(P) 

This concludes the proof. 

REMARK. Much more  could be said about the structure of  ~(P): Let L(P) 
denote the K-linear space spanned by I~(P). Then: 

(i) dim L(P)  = p(e ) .  

(ii) L(P) n De(K[x, y]) = 0. 

The only proof  of  these statements I was able to construct requires use of  

analytical methods and will be presented in a separate paper. 
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